时政·财经·军事 | 生活·家庭·娱乐 | 体坛·历史·科技 | 摄影·旅游·文化 | 移民·教育·就业 | 数码·健康·奇闻 | 社区·评论·问卷
留园网首页 · 新闻速递首页 · 【繁體閱讀】 【网友评论:25 条】 【 热评新闻排行 】 【 热门新闻排行 】 【 即刻热度新闻排行 】 【 72小时神评妙论 】   

诺贝尔医学奖出炉!很冷门 但和我们每个人息息相关(图)

新闻来源: 肿瘤情报局 于2024-10-07 8:10:22  提示:新闻观点不代表本网立场

诺贝尔医学奖出炉!很冷门,但和我们每个人息息相关



1. 10月7日,2024 年诺贝尔生理学或医学奖被授予一项冷门研究:miRNA(小分子核糖核酸)的发现者麻省大学医学院自然科学教授维克多・安布罗斯(Victor Ambros)和波士顿哈佛医学院的遗传学教授加里·鲁夫昆(Gary Ruvkun)。以表彰他们“发现mRNA及其在转录后基因调控中的作用”。他们的发现有助于解释地球上复杂的生命是如何出现的,以及人体是如何由各种不同的组织构成的。

2. 20 世纪 80 年代末, Ambros 和 Ruvkun 在博士后研究员期间研究了一种不起眼的 1 毫米长的蛔虫,并在随后的研究中发现了一种由以前未知的 RNA 类型 microRNA 介导的基因调控新原理。 最初,科学界对研究结果几乎保持沉默。 但是在2001年10月,主流学界终于意识到了这项研究的重要性。 随后的几年里,Ambros 和Ruvkun的研究开辟了一片全新而广阔的领域。

3. Ambros 和 Ruvkun 在小型蠕虫秀丽隐杆线虫中取得的开创性发现,揭示了基因调控的新维度,对所有复杂的生命形式都至关重要。 近年来,miRNA已成为包括心衰在内多种疾病的极具前景的治疗靶点。 在心脏病理学中,miRNA表达和功能失调与不良结局和心衰进展有关。 自2005年以来,我国已有五个与RNA有关的国家重大项目。从生物学机理上来说,miRNA有成为肿瘤标志物的优势。



miRNA(小分子核糖核酸)是什么?它为何会赢得2024年诺贝尔奖?

今年的诺贝尔生理学或医学奖不出所料,斯德哥尔摩卡罗林斯卡医学院(Karolinska Institutet/KI)的评委们,像往年一样,将这个众所瞩目的奖颁给了一个冷门研究:miRNA(小分子核糖核酸)的发现者, 麻省大学医学院自然科学教授 维克托·安布罗斯( Victor Ambros)和波士顿哈佛医学院的遗传学教授,加里·鲁夫昆(Gary Ruvkun)。 以表彰他们“发现mRNA及其在转录后基因调控中的作用”。

他们的发现有助于解释地球上复杂的生命是如何出现的,以及人体是如何由各种不同的组织构成的。 MicroRNA 影响着基因(生命指令)在生物体(包括我们人类)内部的控制方式。



▎ Victor Ambros教授,1979年从美国麻省理工学院获得博士学位,1979-1985年在麻省理工学院做博士后。 目前是美国麻省大学医学院的自然科学教授。 他因在哈佛大学进行了这项研究并因此获得诺贝尔医学奖。 Gary Ruvkun,1982年从美国哈佛大学获得博士学位,他于1985年成为麻省总医院和哈佛医学院的PI,目前是遗传学教授。

2024年的诺贝尔奖单项奖金为1100万瑞典克朗,与2023年持平,合人民币744.117万元。



miRNA(小分子核糖核酸),又称微RNA(微核糖核酸),是真核生物中广泛存在的一种长约21到23个核苷酸的RNA分子,可调节其他基因的表达。 自1993年发现miRNA以来,微 RNA领域的进展和发现颠覆了科学界对基因调控的认识。从胚胎发育开始,到细胞凋亡,乃至肿瘤生长,miRNA在一系列生理和病理过程中发挥着重要的作用,各种遗传、代谢、传染病和肿瘤相关的miRNA为科学家进行病理研究提供了新的角度,可能成为可靠的疾病生物标志物。 如果基因调 控出现问题,就会导致严重的疾病,如癌症、糖尿病或自身免疫。 因此,了解基因活动的调控,几十年来一直是一个重要的目标。

微小RNA的异常调控可能导致癌症和一些疾病,包括先天性听力损失和骨骼疾病。 一个严重的例子是 DICER1 综合征,它会导致多种组织癌症,是由影响微小 RNA 的突变引起的。

科学家们也正积极地通过改变miRNA的功能、研发新的体内递送方法,寻求对疾病干预治疗的手段。



20世纪60年代,人们发现一种被称为转录因子的特殊蛋白质可以与 DNA 中的特定区域结合,并通过决定产生哪些 mRNA 来控制遗传信息的流动。从那时起,人们已经鉴定出数千种转录因子,长期以来人们认为基因调控的主要原理已经得到解决。

然而,1993 年,今年的两位诺贝尔奖得主发表了意想不到的发现,描述了一种新的基因调控水平,这种水平被证明具有非常重要的意义,并且在整个进化过程中都得到了保留。

Victor Ambros 和 Gary Ruvkun 博士对不同细胞类型的发育方式很感兴趣。他们发现了 microRNA,这是一类在基因调控中起关键作用的新型微小 RNA 分子。

他们的突破性发现揭示了一种全新的基因调控原理,事实证明,这种原理对包括人类在内的多细胞生物至关重要。现在已知人类基因组编码了超过一千个 microRNA。他们的惊人发现揭示了基因调控的一个全新维度。

这也是他们获得2024年的诺贝尔医学奖的原因。

去年,该奖项授予了卡塔琳·卡里科 (Katalin Karikó) 和德鲁·魏斯曼 (Drew Weissman),以表彰他们在 MRNA 疫苗方面的工作,该疫苗是遏制 Covid-19 传播的关键工具。





▎ Ambros教授、Ruvkun教授、以及另一位英国学者David C. Baulcombe教授曾因发现“调控基因功能的微小RNA”,获得了2008年的拉斯克临床医学研究奖。





对小蠕虫的研究带来了重大突破:miRNA的发现与命名

20 世纪 80 年代末,Victor Ambros 和 Gary Ruvkun 是Robert Horvitz实验室的博士后研究员。(Horvitz教授与Sydney Brenner、John Sulston共同获得了 2002 年的诺贝尔奖。)

在 Horvitz 的实验室中,他们研究了一种相对不起眼的 1 毫米长的蛔虫,秀丽隐杆线虫。

尽管体型很小,秀丽隐杆线虫却拥有许多特殊的细胞类型,例如神经细胞和肌肉细胞,这些细胞在更大、更复杂的动物中也存在,这使它成为研究多细胞生物组织如何发育和成熟的有用模型。

Ambros 和 Ruvkun 对控制不同遗传程序激活时间的基因很感兴趣,这些基因可确保各种细胞类型在正确的时间发育。他们研究了两种突变的蠕虫菌株 lin-4 和 lin-14,这两种菌株在发育过程中表现出遗传程序激活时间的缺陷。他们想要识别出突变的基因并了解其功能。Ambros 此前曾证明 lin-4 基因似乎是 lin-14 基因的负调节因子。然而,lin-14 活性是如何被阻断的尚不清楚。Ambros 和 Ruvkun 对这些突变体及其潜在关系很感兴趣,并着手解决这些谜团。

博士后研究结束后, Ambros 在哈佛大学新成立的实验室中分析了 lin-4 突变体。系统地进行基因图谱绘制使该基因得以克隆,并获得了意想不到的发现。lin-4 基因产生了一种异常短的 RNA 分子,该分子缺乏蛋白质生产代码。这些令人惊讶的结果表明,来自 lin-4 的这种小 RNA 负责抑制 lin-14。这可能是如何起作用的?



与此同时, Ruvkun 在麻省总医院和哈佛医学院新成立的实验室中研究了 lin-14 基因的调控。与当时已知的基因调控功能不同, Ruvkun 表明,lin-4 不会抑制 lin-14 的 mRNA 生成。这种调控似乎发生在基因表达过程的后期,通过停止蛋白质生成来实现。

实验还揭示了 lin-14 mRNA 中有一个片段是 lin-4 抑制 lin-14 mRNA 所必需的。他们比较了各自的发现,并取得了突破性发现。短 lin-4 序列与 lin-14 mRNA 关键片段中的互补序列相匹配。Ambros 和 Ruvkun 进行了进一步的实验,表明 lin-4 microRNA 通过与其 mRNA 中的互补序列结合来关闭 lin-14,从而阻止 lin-14 蛋白质的产生。

一种由以前未知的 RNA 类型 microRNA 介导的基因调控新原理被发现了!

该研究结果于 1993 年以两篇文章的形式发表在《细胞》杂志上。

这种基因并不编码蛋白,而是表达一种长度为22nt的小RNA,并且这种小RNA可以抑制一种核蛋白LIN-14基因的表达从而调节线虫的发育。

他们推测这种抑制的机制在于lin-4能够与LIN-14 mRNA的3’ UTR区域上独特的重复区域相互补。发生在线虫第一幼虫期末尾的这种抑制作用,将启动线虫从第一幼虫期向第二幼虫期的发育转变,因此这种小RNA又被称为“小分子时序RNA(small temporal RNA,stRNA)”。



最初,科学界对发表的研究结果几乎保持了沉默。

尽管研究结果很有趣,但这种不寻常的基因调控机制被认为是线虫的特殊之处,可能与人类和其他更复杂的动物无关。

这种看法在 2000 年发生了改变,当时 Ruvkun 研究小组发表了他们发现的另一种由 let-7 基因编码的 microRNA。与 lin-4 不同,let-7 基因高度保守,存在于整个动物界。这篇文章引起了人们的极大兴趣,在随后的几年里,人们发现了数百种不同的 microRNA。今天,我们知道人类有超过 1000 种不同 microRNA 的基因,并且 microRNA 的基因调控在多细胞生物中是普遍存在的。

在2001年10月,Thomas Tuschl、David Bartel和Victor Ambros三人分别领导的三个研究组在《science》杂志同期发文,将这种小RNA命名为microRNA,简称miRNA。

这一次,主流学界终于意识到了这项研究的重要性。

随后的几年里,成千上万的miRNA在各种物种(包括人类、小鼠、大鼠、果蝇、斑马鱼、拟南芥、水稻等动植物的几乎所有类群)中被发现,开辟了一片全新而广阔的科学研究领域。





参与几乎所有生理病理过程的miRNA

微RNA基因调控机制最早由 Ambros 和 Ruvkun 博士发现,这一机制使得越来越复杂的生物得以进化。

我们从基因研究中得知,没有微RNA,细胞和组织就无法正常发育。微RNA的异常调控可能导致癌症,人类已发现编码微RNA的基因发生突变,导致先天性听力丧失、眼部和骨骼疾病等疾病。微RNA生成所需的一种蛋白质发生突变会导致 DICER1 综合征,这是一种罕见但严重的综合征,与各种器官和组织的癌症有关。

Ambros 和 Ruvkun 在小型蠕虫秀丽隐杆线虫中取得的开创性发现是出乎意料的,并揭示了基因调控的新维度,这对所有复杂的生命形式都至关重要。

近年来,miRNA已成为包括心衰在内多种疾病的极具前景的治疗靶点。在心脏病理学中,miRNA表达和功能失调与不良结局和心衰进展有关。

自2005年以来,我国已有五个与RNA有关的国家重大项目。我国科学家在肿瘤、心血管病等领域,也已取得一些好的成绩。世界各国已有多种核酸技术进入生物产业,过百种的各类核酸药物进入临床试验。

从生物学机理上来说,miRNA有成为肿瘤标志物的优势。 它是肿瘤细胞主动分泌的,随着肿瘤细胞的生成、凋零,miRNA的表达量一直在变化,所以每种miRNA的表达量代表了在某一刻人类体内健康或者疾病的信息。MiRXES在人体这2000多种miRNA中,他们找出了与胃癌高度相关的12种miRNA,当人体中出现胃癌细胞时,这12种miRNA在血液中的浓度会出现异常。

			
网编:空问站

鲜花(12)

鸡蛋(0)
25 条
【手机扫描浏览分享】

扫一扫二维码[Scan QR Code]
进入内容页点击屏幕右上分享按钮


敬请注意:新闻内容来自网络,供网友多视角阅读参考,观点不代表本网立场!若有违规侵权,请联系我们。
热门评论当前热评  更多评论...
评论人:日本锅巴[☆不夸张的字词☆][个人频道][个人动态] 2024年10月07日8:14 回复
多来来中国跟印度,你会发现很多新品种病毒
4   3
评论人:起来不愿做奴隶的人们[☆品衔R4☆][个人频道][个人动态] 2024年10月07日9:49 回复
 回复10楼:昂撒的诺贝尔一向翻裆乳滑!
全宇宙都知道医学奖应该给亲自指挥亲自部署的包子蒂,
没有封城清零,中国14亿人矿日早死光了。
封城清零绝对是百年未有之医学大便菊!
还有诺贝尔化学奖、物理奖、文学奖、经济奖、和平奖,
都应该给指明方向的包子蒂,
天不蒸包子,万古如长夜!
29   1
评论人:nikon[☆★声望品衔7★☆][个人频道][个人动态] 2024年10月07日9:18 回复
说好的陈志坚呢?
9  
评论人:陈子昂[☆品衔R3☆][个人频道][个人动态] 2024年10月07日8:47 回复
 回复3楼:研究出来了,告诉世人了,你明白了,就觉得简单了!知道吗,今天常见的许多科技都是过去诺奖得奖项目:X光-伦琴射线的发现导致医院的X光透视仍然在用;细菌的发现导致医院知道消毒,拯救了无数人的生命;人工固氮的合成氨技术导致无数人免于饥荒, 这些都是一百多年前的诺奖得奖项目!
28  
评论人:据说据说[☆品衔R4☆][个人频道][个人动态] 2024年10月07日8:28 回复
美国将永远在全方位引领全世界。
18   3
评论人:陈子昂[☆品衔R3☆][个人频道][个人动态] 2024年10月07日8:26 回复
伟大的科学家都是因为热爱科学探索和某种自认的责任感而从事外人看来极其枯燥的科学研究工作的,得奖只是概率极小的一种幸运!
21  
评论人:BBaddict[☆品衔R3☆][个人频道][个人动态] 2024年10月07日12:06 回复
 回复19楼:草泥马烂逼
1  
评论人:打酱油的路过[☆品衔R4☆][个人频道][个人动态] 2024年10月07日11:34 回复
2015年的时候听过小胡子教授的发言。RNA研究是诺奖热门
1  
评论人:rry[♂★★没爱好★★♂][个人频道][个人动态] 2024年10月07日9:44 回复
我在几年前就断定诺贝尔科技奖不会再发给中国人了,包括华裔,因为瑞典是欧洲最反中国的国家,诺贝尔评委会有瑞典议会指定。
6   5
新闻速递首页 | 近期热门新闻 | 近期热评新闻 | 72小时神评妙论 | 即刻热度新闻排行
生活原创】【三叶原创】【留园网事】【生活百态】【杂论闲侃】【婚姻家庭】【女性频道
前期相关精彩新闻
新闻速递首页·向留园新闻区投稿·本地新闻·返回前页